232 research outputs found

    Domain-Walls in Einstein-Gauss-Bonnet Bulk

    Full text link
    We investigate the dynamics of a d-dimensional domain wall (DW) in a d+1-dimensional Einstein-Gauss-Bonnet (EGB) bulk. Exact effective potential induced by the Gauss-Bonnet (GB) term on the wall is derived. In the absence of the GB term we recover the familiar gravitational and anti-harmonic oscillator potentials. Inclusion of the GB correction gives rise to a minimum radius of bounce for the Friedmann-Robertson-Walker (FRW) universe expanding with a negative pressure on the DW.Comment: 4 pages and 4 figures, to appear in PR

    Velocity dominated singularities in the cheese slice universe

    Full text link
    We investigate the properties of spacetimes resulting from matching together exact solutions using the Darmois matching conditions. In particular we focus on the asymptotically velocity term dominated property (AVTD). We propose a criterion that can be used to test if a spacetime constructed from a matching can be considered AVTD. Using the Cheese Slice universe as an example, we show that a spacetime constructed from a such a matching can inherit the AVTD property from the original spacetimes. Furthermore the singularity resulting from this particular matching is an AVTD singularity.Comment: 11 pages, 3 figures, accepted for publication in the International Journal of Modern Physics

    Cylindrical thin-shell wormholes and energy conditions

    Full text link
    We prove the impossibility of cylindrical thin-shell wormholes supported by matter satisfying the energy conditions everywhere, under reasonable assumptions about the asymptotic behaviour of the - in general different - metrics at each side of the throat. In particular, we reproduce for singular sources previous results corresponding to flat and conical asymptotics, and extend them to a more general asymptotic behaviour. Besides, we establish necessary conditions for the possibility of non exotic cylindrical thin-shell wormholes.Comment: 9 pages; slightly improved version of the article accepted in Int. J. Mod. Phys.

    Stability of thin-shell wormholes supported by ordinary matter in Einstein-Maxwell-Gauss-Bonnet gravity

    Full text link
    Recently in (Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thin-shell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter α<0,\alpha <0, stability regions form for a narrow band of finely-tuned mass and charge. For the case α>0\alpha >0, we iterate once more that no stable, normal matter thin-shell wormhole exists.Comment: 11 pages, 4 figure

    Higher-Dimensional Bulk Wormholes and their Manifestations in Brane Worlds

    Get PDF
    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type.Comment: 21 pages, 1 figur

    Lovelock Thin-Shell Wormholes

    Full text link
    We construct the asymptotically flat charged thin-shell wormholes of Lovelock gravity in seven dimensions by cut-and-paste technique, and apply the generalized junction conditions in order to calculate the energy-momentum tensor of these wormholes on the shell. We find that for negative second order and positive third order Lovelock coefficients, there are thin-shell wormholes that respect the weak energy condition. In this case, the amount of normal matter decreases as the third order Lovelock coefficient increases. For positive second and third order Lovelock coefficients, the weak energy condition is violated and the amount of exotic matter decreases as the charge increases. Finally, we perform a linear stability analysis against a symmetry preserving perturbation, and find that the wormholes are stable provided the derivative of surface pressure density with respect to surface energy density is negative and the throat radius is chosen suitable.Comment: 13 pages, 6 figure

    Perfect fluid spheres with cosmological constant

    Full text link
    We examine static perfect fluid spheres in the presence of a cosmological constant. New exact matter solutions are discussed which require the Nariai metric in the vacuum region. We generalize the Einstein static universe such that neither its energy density nor its pressure is constant throughout the spacetime. Using analytical techniques we derive conditions depending on the equation of state to locate the vanishing pressure surface. This surface can in general be located in regions with decreasing area group orbits. We use numerical methods to integrate the field equations for realistic equations of state and find consistent results.Comment: 15 pages, 6 figures; added new references, removed one figure, improved text, accepted for publication in PR

    Higher dimensional thin-shell wormholes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    Full text link
    We present thin-shell wormhole solutions in Einstein-Yang-Mills-Gauss-Bonnet (EYMGB) theory in higher dimensions d\geq5. Exact black hole solutions are employed for this purpose where the radius of thin-shell lies outside the event horizon. For some reasons the cases d=5 and d>5 are treated separately. The surface energy-momentum of the thin-shell creates surface pressures to resist against collapse and rendering stable wormholes possible. We test the stability of the wormholes against spherical perturbations through a linear energy-pressure relation and plot stability regions. Apart from this restricted stability we investigate the possibility of normal (i.e. non-exotic) matter which satisfies the energy conditions. For negative values of the Gauss-Bonnet (GB) parameter we obtain such physical wormholes.Comment: 9 pages, 6 figures. Dedicated to the memory of Rev. Ibrahim Eken (1927-2010) of Turke

    Traversable wormholes in a string cloud

    Full text link
    We study spherically symmetric thin-shell wormholes in a string cloud background in (3+1)-dimensional spacetime. The amount of exotic matter required for the construction, the traversability and the stability under radial perturbations, are analyzed as functions of the parameters of the model. Besides, in the Appendices a non perturbative approach to the dynamics and a possible extension of the analysis to a related model are briefly discussed.Comment: 21 pages, 10 figures; accepted for publication in Int. J. Mod. Phys.
    • …
    corecore